Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available May 15, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract We construct projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone.As a consequence, we prove that the pseudo-effective cone of the Grothendieck–Knudsen moduli space \overline{M}_{0,n}of stable rational curves is not polyhedral for n\geq 10.These results hold both in characteristic 0 and in characteristic 𝑝, for all primes 𝑝.Many of these toric surfaces are related to an interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order.Our analysis relies on tools of arithmetic geometry and Galois representations in the spirit of the Lang–Trotter conjecture, producing toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in characteristic 0 and in characteristic 𝑝, for an infinite set of primes 𝑝 of positive density.more » « less
-
Abstract Projective duality identifies the moduli spaces $$\textbf{B}_n$$ and $$\textbf{X}(3,n)$$ parametrizing linearly general configurations of $$n$$ points in $$\mathbb{P}^2$$ and $$n$$ lines in the dual $$\mathbb{P}^2$$, respectively. The space $$\textbf{X}(3,n)$$ admits Kapranov’s Chow quotient compactification $$\overline{\textbf{X}}(3,n)$$, studied also by Lafforgue, Hacking, Keel, Tevelev, and Alexeev, which gives an example of a KSBA moduli space of stable surfaces: it carries a family of certain reducible degenerations of $$\mathbb{P}^2$$ with $$n$$ “broken lines”. Gerritzen and Piwek proposed a dual perspective, a compact moduli space parametrizing certain reducible degenerations of $$\mathbb{P}^2$$ with $$n$$ smooth points. We investigate the relation between these approaches, answering a question of Kapranov from 2003.more » « less
An official website of the United States government

Full Text Available